Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 208: 115294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527624

RESUMO

Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.


Assuntos
Edição de Genes , Dermatopatias , Humanos , Sistemas CRISPR-Cas/genética , Qualidade de Vida , Pele , Dermatopatias/genética , Dermatopatias/terapia
2.
Sci Immunol ; 9(91): eadh0152, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181095

RESUMO

Immune tolerance is maintained in lymphoid organs (LOs). Despite the presence of complex immune cell networks in non-LOs, it is unknown whether self-tolerance is maintained in these tissues. We developed a technique to restrict genetic recombination to regulatory T cells (Tregs) only in skin. Selective depletion of skin Tregs resulted in T cell-mediated inflammation of hair follicles (HFs). Suppression did not rely on CTLA-4, but instead on high-affinity interleukin-2 (IL-2) receptor expression by skin Tregs, functioning exclusively in a cell-extrinsic manner. In a novel model of HF stem cell (HFSC)-driven autoimmunity, we reveal that skin Tregs immunologically protect the HFSC niche. Finally, we used spatial transcriptomics to identify aberrant IL-2 signaling at stromal-HF interfaces in a rare form of human alopecia characterized by HFSC destruction and alopecia areata. Collectively, these results reveal the fundamental biology of Tregs in skin uncoupled from the systemic pool and elucidate a mechanism of self-tolerance.


Assuntos
Privilégio Imunológico , Linfócitos T Reguladores , Humanos , Folículo Piloso , Interleucina-2 , Nicho de Células-Tronco
3.
Nat Commun ; 14(1): 7470, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978298

RESUMO

Darier disease (DD) is a rare, inherited multi-organ disorder associated with mutations in the ATP2A2 gene. DD patients often have skin involvement characterized by malodorous, inflamed skin and recurrent, severe infections. Therapeutic options are limited and inadequate for the long-term management of this chronic disease. The aim of this study was to characterize the cutaneous immune infiltrate in DD skin lesions in detail and to identify new therapeutic targets. Using gene and protein expression profiling assays including scRNA sequencing, we demonstrate enhanced expression of Th17-related genes and cytokines and increased numbers of Th17 cells in six DD patients. We provide evidence that targeting the IL-17/IL-23 axis in a case series of three DD patients with monoclonal antibodies is efficacious with significant clinical improvement. As DD is a chronic, relapsing disease, our findings might pave the way toward additional options for the long-term management of skin inflammation in patients with DD.


Assuntos
Doença de Darier , Humanos , Doença de Darier/genética , Doença de Darier/metabolismo , Doença de Darier/patologia , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-23/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Pele/patologia , Células Th17/metabolismo
6.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34675067

RESUMO

Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/imunologia , Memória Imunológica/imunologia , Vírus do Sarampo/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
7.
Immunohorizons ; 4(10): 585-596, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037096

RESUMO

After activation, CD4+ Th cells differentiate into functionally specialized populations that coordinate distinct immune responses and protect against different types of pathogens. In humans, these effector and memory Th cell subsets can be readily identified in peripheral blood based on their differential expression of chemokine receptors that govern their homeostatic and inflammatory trafficking. Foxp3+ regulatory T (Treg) cells can also be divided into subsets that phenotypically mirror each of these effector populations and share expression of key transcription factors and effector cytokines. In this study, we performed comprehensive transcriptional profiling of 11 phenotypically distinct Th and Treg cell subsets sorted from peripheral blood of healthy individuals. Despite their shared phenotypes, we found that mirror Th and Treg subsets were transcriptionally dissimilar and that Treg cell populations showed limited transcriptional diversity compared with Th cells. We identified core transcriptional signatures shared across all Th and Treg cell populations and unique signatures that define each of the Th or Treg populations. Finally, we applied these signatures to bulk Th and Treg RNA-sequencing data and found enrichment of specific Th and Treg cell populations in different human tissues. These results further define the molecular basis for the functional specialization and differentiation of Th and Treg cell populations and provide a new resource for examining Th and Treg specialization in RNA-sequencing data.


Assuntos
Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Transcriptoma/genética , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Homeostase , Humanos , RNA-Seq
8.
J Immunol ; 205(10): 2577-2582, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33037141

RESUMO

Immune homeostasis in peripheral tissues is, to a large degree, maintained by the differentiation and action of regulatory T cells (Treg) specific for tissue Ags. Using a novel mouse model, we have studied the differentiation of naive CD4+ T cells into Foxp3+ Treg in response to a cutaneous Ag (OVA). We found that expression of OVA resulted in fatal autoimmunity and in prevention of peripheral Treg generation. Inhibiting mTOR activity with rapamycin rescued the generation of Foxp3+ T cells. When we varied the level of Ag expression to modulate TCR signaling, we found that low Ag concentrations promoted the generation of Foxp3+ T cells, whereas high levels expanded effector T cells and caused severe autoimmunity. Our findings indicate that the expression level of tissue Ag is a key determinant of the balance between tissue-reactive effector and peripheral Foxp3+ T cells, which determines the choice between tolerance and autoimmunity.


Assuntos
Doenças Autoimunes/imunologia , Diferenciação Celular/imunologia , Ativação Linfocitária , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Ovalbumina/genética , Ovalbumina/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sirolimo/farmacologia , Pele/imunologia , Pele/patologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
9.
Cell Commun Signal ; 18(1): 160, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023610

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) is a gram-negative bacterium that chronically infects approximately 50% of the world's human population. While in most cases the infection remains asymptomatic, 10% of infected individuals develop gastric pathologies and 1-3% progress to gastric cancer. Although H. pylori induces severe inflammatory responses, the host's immune system fails to clear the pathogen and H. pylori can persist in the human stomach for decades. As suppressor of cytokine signaling (SOCS) proteins are important feedback regulators limiting inflammatory responses, we hypothesized that H. pylori could modulate the host's immune responses by inducing SOCS expression. METHODS: The phenotype of human monocyte-derived DCs (moDCs) infected with H. pylori was analyzed by flow cytometry and multiplex technology. SOCS expression levels were monitored by qPCR and signaling studies were conducted by means of Western blot. For functional studies, RNA interference-based silencing of SOCS1-3 and co-cultures with CD4+ T cells were performed. RESULTS: We show that H. pylori positive gastritis patients express significantly higher SOCS3, but not SOCS1 and SOCS2, levels compared to H. pylori negative patients. Moreover, infection of human moDCs with H. pylori rapidly induces SOCS3 expression, which requires the type IV secretion system (T4SS), release of TNFα, and signaling via the MAP kinase p38, but appears to be independent of TLR2, TLR4, MEK1/2 and STAT proteins. Silencing of SOCS3 expression in moDCs prior to H. pylori infection resulted in increased release of both pro- and anti-inflammatory cytokines, upregulation of PD-L1, and decreased T-cell proliferation. CONCLUSIONS: This study shows that H. pylori induces SOCS3 via an autocrine loop involving the T4SS and TNFα and p38 signaling. Moreover, we demonstrate that high levels of SOCS3 in DCs dampen PD-L1 expression on DCs, which in turn drives T-cell proliferation. Video Abstract.


Assuntos
Sistemas de Secreção Bacterianos , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Helicobacter pylori/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antígenos de Bactérias/metabolismo , Antígeno B7-H1/metabolismo , Proteínas de Bactérias/metabolismo , Proliferação de Células , Quimiocinas/metabolismo , Retroalimentação Fisiológica , Infecções por Helicobacter/metabolismo , Humanos , Janus Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Mutação/genética , Fosforilação , Transdução de Sinais , Receptores Toll-Like/metabolismo
10.
Sci Rep ; 10(1): 11164, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636404

RESUMO

Human skin contains a population of memory T cells that supports tissue homeostasis and provides protective immunity. The study of human memory T cells is often restricted to in vitro studies and to human PBMC serving as primary cell source. Because the tissue environment impacts the phenotype and function of memory T cells, it is crucial to study these cells within their tissue. Here we utilized immunodeficient NOD-scid IL2rγnull (NSG) mice that carried in vivo-generated engineered human skin (ES). ES was generated from human keratinocytes and fibroblasts and was initially devoid of skin-resident immune cells. Upon adoptive transfer of human PBMC, this reductionist system allowed us to study human T cell recruitment from a circulating pool of T cells into non-inflamed human skin in vivo. Circulating human memory T cells preferentially infiltrated ES and showed diverse functional profiles of T cells found in fresh human skin. The chemokine and cytokine microenvironment of ES closely resembled that of non-inflamed human skin. Upon entering the ES T cells assumed a resident memory T cell-like phenotype in the absence of infection, and a proportion of these cutaneous T cells can be locally activated upon injection of monocyte derived dendritic cells (moDCs) that presented Candida albicans. Interestingly, we found that CD69+ memory T cells produced higher levels of effector cytokines in response to Candida albicans, compared to CD69- T cells. Overall, this model has broad utility in many areas of human skin immunology research, including the study of immune-mediated skin diseases.


Assuntos
Memória Imunológica , Pele/imunologia , Linfócitos T/imunologia , Adulto , Animais , Linfócitos T CD4-Positivos/imunologia , Candida albicans/imunologia , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Pele/citologia , Transplante de Pele , Engenharia Tecidual
11.
Mol Oncol ; 14(9): 1930-1946, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32615027

RESUMO

Genetic activation of hedgehog/glioma-associated oncogene homolog (HH/GLI) signaling causes basal cell carcinoma (BCC), a very frequent nonmelanoma skin cancer. Small molecule targeting of the essential HH effector Smoothened (SMO) has proven an effective therapy of BCC, though the frequent development of drug resistance poses major challenges to anti-HH treatments. In light of recent breakthroughs in cancer immunotherapy, we analyzed the possible immunosuppressive mechanisms in HH/GLI-induced BCC in detail. Using a genetic mouse model of BCC, we identified profound differences in the infiltration of BCC lesions with cells of the adaptive and innate immune system. Epidermal activation of Hh/Gli signaling led to an accumulation of immunosuppressive regulatory T cells, and to an increased expression of immune checkpoint molecules including programmed death (PD)-1/PD-ligand 1. Anti-PD-1 monotherapy, however, did not reduce tumor growth, presumably due to the lack of immunogenic mutations in common BCC mouse models, as shown by whole-exome sequencing. BCC lesions also displayed a marked infiltration with neutrophils, the depletion of which unexpectedly promoted BCC growth. The study provides a comprehensive survey of and novel insights into the immune status of murine BCC and serves as a basis for the design of efficacious rational combination treatments. This study also underlines the need for predictive immunogenic mouse models of BCC to evaluate the efficacy of immunotherapeutic strategies in vivo.


Assuntos
Carcinoma Basocelular/imunologia , Epiderme/patologia , Proteínas Hedgehog/metabolismo , Imunidade , Terapia de Imunossupressão , Transdução de Sinais , Neoplasias Cutâneas/imunologia , Microambiente Tumoral/imunologia , Animais , Carcinoma Basocelular/patologia , Proliferação de Células , Quimiocinas/metabolismo , Proteínas de Checkpoint Imunológico/metabolismo , Camundongos , Neutrófilos/metabolismo , Oncogenes , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Proteína GLI1 em Dedos de Zinco/metabolismo
13.
Sci Immunol ; 4(37)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278120

RESUMO

Tissue-resident memory T cells (TRM) persist locally in nonlymphoid tissues where they provide frontline defense against recurring insults. TRM at barrier surfaces express the markers CD103 and/or CD69, which function to retain them in epithelial tissues. In humans, neither the long-term migratory behavior of TRM nor their ability to reenter the circulation and potentially migrate to distant tissue sites has been investigated. Using tissue explant cultures, we found that CD4+CD69+CD103+ TRM in human skin can down-regulate CD69 and exit the tissue. In addition, we identified a skin-tropic CD4+CD69-CD103+ population in human lymph and blood that is transcriptionally, functionally, and clonally related to the CD4+CD69+CD103+ TRM population in the skin. Using a skin xenograft model, we confirmed that a fraction of the human cutaneous CD4+CD103+ TRM population can reenter circulation and migrate to secondary human skin sites where they reassume a TRM phenotype. Thus, our data challenge current concepts regarding the strict tissue compartmentalization of CD4+ T cell memory in humans.


Assuntos
Antígenos CD/imunologia , Sangue/imunologia , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica/imunologia , Cadeias alfa de Integrinas/imunologia , Antígenos CD/sangue , Células Cultivadas , Voluntários Saudáveis , Humanos , Cadeias alfa de Integrinas/sangue , Pele/citologia , Pele/imunologia
14.
J Immunol ; 200(9): 3100-3108, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29563179

RESUMO

Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103+ dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression. This window of time was characterized by the preferential activation of tissue-resident Ag-specific effector T cells (Teffs), with no concurrent activation of Ag-specific Teffs in SDLNs. Using genetic deletion and adoptive transfer approaches, we show that activation of skin-resident Teffs is required to drive CD103+ DDC migration in response to tissue self-antigen and this Batf3-dependent DC population is necessary to mount a fulminant autoimmune response in skin. Conversely, activation of Ag-specific Teffs in SDLNs played no role in DDC migration. Our studies reveal a crucial role for skin-resident T cell-derived signals, originating at the site of self-antigen expression, to drive DDC migration during the elicitation phase of an autoimmune response.


Assuntos
Autoantígenos/imunologia , Autoimunidade/imunologia , Células de Langerhans/imunologia , Linfócitos T/imunologia , Animais , Movimento Celular/imunologia , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Pele/citologia , Pele/imunologia
16.
J Clin Invest ; 126(9): 3447-52, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27525433

RESUMO

BACKGROUND: Immune checkpoint blockade is revolutionizing therapy for advanced cancer, but many patients do not respond to treatment. The identification of robust biomarkers that predict clinical response to specific checkpoint inhibitors is critical in order to stratify patients and to rationally select combinations in the context of an expanding array of therapeutic options. METHODS: We performed multiparameter flow cytometry on freshly isolated metastatic melanoma samples from 2 cohorts of 20 patients each prior to treatment and correlated the subsequent clinical response with the tumor immune phenotype. RESULTS: Increasing fractions of programmed cell death 1 high/cytotoxic T lymphocyte-associated protein 4 high (PD-1hiCTLA-4hi) cells within the tumor-infiltrating CD8+ T cell subset strongly correlated with response to therapy (RR) and progression-free survival (PFS). Functional analysis of these cells revealed a partially exhausted T cell phenotype. Assessment of metastatic lesions during anti-PD-1 therapy demonstrated a release of T cell exhaustion, as measured by an accumulation of highly activated CD8+ T cells within tumors, with no effect on Tregs. CONCLUSIONS: Our data suggest that the relative abundance of partially exhausted tumor-infiltrating CD8+ T cells predicts response to anti-PD-1 therapy. This information can be used to appropriately select patients with a high likelihood of achieving a clinical response to PD-1 pathway inhibition. FUNDING: This work was funded by a generous gift provided by Inga-Lill and David Amoroso as well as a generous gift provided by Stephen Juelsgaard and Lori Cook.


Assuntos
Melanoma/imunologia , Melanoma/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Anticorpos Monoclonais Humanizados/administração & dosagem , Biópsia , Linfócitos T CD8-Positivos/citologia , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Sistema Imunitário , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Melanoma/patologia , Metástase Neoplásica , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/patologia , Subpopulações de Linfócitos T/citologia , Microambiente Tumoral/imunologia
17.
Immunity ; 43(5): 1011-21, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26588783

RESUMO

The skin is a site of constant dialog between the immune system and commensal bacteria. However, the molecular mechanisms that allow us to tolerate the presence of skin commensals without eliciting destructive inflammation are unknown. Using a model system to study the antigen-specific response to S. epidermidis, we demonstrated that skin colonization during a defined period of neonatal life was required for establishing immune tolerance to commensal microbes. This crucial window was characterized by an abrupt influx of highly activated regulatory T (Treg) cells into neonatal skin. Selective inhibition of this Treg cell wave completely abrogated tolerance. Thus, the host-commensal relationship in the skin relied on a unique Treg cell population that mediated tolerance to bacterial antigens during a defined developmental window. This suggests that the cutaneous microbiome composition in neonatal life is crucial in shaping adaptive immune responses to commensals, and disrupting these interactions might have enduring health implications.


Assuntos
Animais Recém-Nascidos/imunologia , Pele/imunologia , Pele/microbiologia , Infecções Estafilocócicas/imunologia , Staphylococcus epidermidis/imunologia , Linfócitos T Reguladores/imunologia , Animais , Animais Recém-Nascidos/microbiologia , Antígenos de Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Tolerância Imunológica/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/imunologia , Dados de Sequência Molecular , Infecções Estafilocócicas/microbiologia , Linfócitos T Reguladores/microbiologia
18.
Front Immunol ; 5: 333, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25076948

RESUMO

Foxp3(+) regulatory T cells (Treg cells) are essential for establishing and maintaining self-tolerance, and also inhibit immune responses to innocuous environmental antigens. Imbalances and dysfunction in Treg cells lead to a variety of immune-mediated diseases, as deficits in Treg cell function contribute to the development autoimmune disease and pathological tissue damage, whereas overabundance of Treg cells can promote chronic infection and tumorigenesis. Recent studies have highlighted the fact that Treg cells themselves are a diverse collection of phenotypically and functionally specialized populations, with distinct developmental origins, antigen-specificities, tissue-tropisms, and homeostatic requirements. The signals directing the differentiation of these populations, their specificities and the mechanisms by which they combine to promote organ-specific and systemic tolerance, and how they embody the emerging property of regulatory memory are the focus of this review.

19.
J Clin Invest ; 124(3): 1027-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509084

RESUMO

Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.


Assuntos
Folículo Piloso/patologia , Linfócitos T Reguladores/metabolismo , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/imunologia , Humanos , Memória Imunológica , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Fenótipo , Psoríase/imunologia , Psoríase/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CCR7/metabolismo , Pele/imunologia , Linfócitos T Reguladores/imunologia , Adulto Jovem
20.
J Immunol ; 192(4): 1351-5, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24442443

RESUMO

Immune homeostasis in peripheral tissues is achieved by maintaining a balance between pathogenic effector T cells (Teffs) and protective Foxp3(+) regulatory T cells (Tregs). Using a mouse model of an inducible tissue Ag, we demonstrate that Ag persistence is a major determinant of the relative frequencies of Teffs and Tregs. Encounter of transferred naive CD4(+) T cells with transiently expressed tissue Ag leads to generation of cytokine-producing Teffs and peripheral Tregs. Persistent expression of Ag, a mimic of self-antigen, leads to functional inactivation and loss of the Teffs with preservation of Tregs in the target tissue. The inactivation of Teffs by persistent Ag is associated with reduced ERK phosphorylation, whereas Tregs show less reduction in ERK phosphorylation and are relatively resistant to ERK inhibition. Our studies reveal a crucial role for Ag in maintaining appropriate ratios of Ag-specific Teffs to Tregs in tissues.


Assuntos
Autoantígenos/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Difenilamina/análogos & derivados , Difenilamina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inflamação/imunologia , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ovalbumina , Fosforilação , Pele/imunologia , Linfócitos T Reguladores/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...